
Lab-Prep 5 – Assembly Timers and ADC in ATMEL  
Marcus Pham - Sept 2018

Revision for IO on the Arduino Nano
1. Remember to add the header file (.include “m328Pdef.inc”) at the top, and to

initialise the stack pointer if needed:  
LDI R16, low(RAMEND)

OUT SPL, R16  
LDI R16, high(RAMEND)

OUT SPH, R16

2. Set up IO directions:

a. DDR(B/C/D) is a special register that stores an 8-bit value representing the
directions for the pins on the corresponding port. (Most significant first).  
Outputs = 1. 
Inputs = 0.

b. To set the register, place the 8-bit value you’d like to set inside a general
purpose register (eg. R16).

c. Then set the port to the corresponding value using OUT. 
eg. To set Port B to all inputs, except B4 and B0 which are outputs:  
LDI R16, 0b00010001  
OUT DDRB, R16

3. To set pins use OUT and PORT(B/C/D), after setting up DDR. 
eg. To set Pins 4 and 0 in port B to high (internal pull-up):  
LDI R16, 0b00010001  
OUT PORTB, R16

4. To read from pins use IN and PIN(B/C/D)  
eg. To read from Pins 5 and 1 on port B:  
IN R16, PINB

 

Creating PWM signal, method 1 – Blocking
1. One method to create a PWM signal is to set the desired pin to high and then run a

loop of commands (NOP) to delay the next line of code, before setting to low and
repeating the process.

2. First thing you will need is the clock speed of the controller that you are using. For
the Arduino nano (ATMEGA328P), the clock speed is 16MHz.

3. From this you can calculate the time needed for the signal to be high then create a
loop that blocks the next execution a certain amount of cycles.

Creating a PWM signal, method 2 – Interrupts and Timers (Non-blocking)
However, there will be times where you still need to process other inputs and outputs
whilst creating a signal. A blocking method would stop all other execution and hence make
you unable to read in external inputs or do any other commands.
One way around this is to use the timers on the microcontroller.

The documentation for use of timers is available in the full ATMEGA328P datasheet from
page 93.

1. To use timers, again you must set the 2 corresponding registers to set the timer.
For our lab we will be using a 16 bit timer (TCCR1A/B). Related information is
available from page 131

2. We are using channel A, and hence need to set the corresponding bits: 
LDS R16, TCCR1A ; Storing the current value of the timer register to R16 
ORI R16, (1<<COM1A1)|(1<<WGM11) ; Sets COM1A1 and WGM11, leaving the rest  
STS TCCR1A, R16 ; Stores the new configuration back to the timer register 
 
LDS R16, TTCR1B ; Storing the current value of the timer register 
ORI R16, (1<<WGM13)|(1<<WGM12)|(1<<CS11)|(1<<CS10) ; setting pins 
STS TCCR1B, R16 ; Storing configuration  
These steps set your timers to : 
 - Clear OC1A/B on match (set to low, for the low section of our PWM)  
 - Mode 14: Fast PWM, with ICR1 as the top. 
 - Prescaler of clk/64

3. To set period, we can now set ICR1 to reflect the entire period (eq. on page 125) 
LDI R17, HIGH(<Value of ICR1>)  
LDI R16, LOW(<Value of ICR1>)  
STS ICR1H, R17  
STS ICR1L, R16  
The calculation for the values: 

 
 

 

4. To set the high sections of our period we set OCR1A (Same equation as above) 
LDI R16, <Value of OCR1>  
LDI R17, <Value of OCR1>  
STS OCR1AH, R17  
STS OCR1AL, R16  

Analog to Digital Conversion (ADC)

Similar to the timers, we must set some registers to allow for ADC. From page 234.
1. Set ADMUX and ADCSRA:  

LDI R16, (1<<REFS0)|(1<<ADLAR)|(0<<MUX3)  
STS ADMUX, R16  
LDI R16, (1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)  
STS ADCSRA, R16  
This sets our reference to Vcc (should out a capacitor), Left adjust. 
Also sets MUX3-0 as 0, giving us ADC0 for use. 
Additionally, it sets the ADC control and status register A. 
This setting will set the enable, and select the prescaler mode (in this case, 128)

2. To run the ADC, you must set the start conversion pin (ADSC) on ADCSRA register 
LDS R16, ADCSRA 
ORI R16, (1<<ADSC)  
STS ADCSRA, R16

3. As the conversion takes time, we must wait until the conversion is complete. This
is signalled by bit 6 (ADSC), the start conversion pin becoming 0. 
So inside a loop we check that pin before using the number: 
adc_loop:  
LDS R16, ADCSRA 
SBRC R16, 6 ; could have used ADSC  
RJMP adc_loop

4. So if the conversion is complete, it will break out of the loop and we can now read
the value

The value is stored in ADCH (and ADCL). This value is dependant on if we selected
most significant bit first or not (ADLAR from before). This is detailed on page 250. 
LDS R16, ADCL  
LDS R17, ADCH  

