QUESTION 1NUMBER SYSTEMS

(a) Convert the following numbers. You need to show workings to get points!

GIVEN	VALUE	CONVERT TO	ANSWERS
Binary signed	1010 1010	Decimal	
Dinary Signed		Decimal	
Binary signed	11111 0001	Decimal	

Decimal	88	Radix-8, unsigned	
Radix-8, unsig .	421	Decimal	

Binary fixed pt.	1101.011	Decimal	
Decimal	42.875	Binary fixed pt.	

	IEEE FP	1 1000 0100 1111111 00000000 00000000	Decimal FP	
IEEE ED 0 0000 0000 1000000 0000000 0000000 Decimal ED			Decimal FP	

QUESTION 2a CPU DESIGN

Consider the CPU design shown below:

(Timer unit identical to CPU2)

Assume the RAM memory contents starts with the following Bytes (hex): 10 10 13 FF 03 01 13 01 17 FD 02 00 ...

Run this program step by step and write down contents of Accu and PC after each step:

Step	PC	Command	Accu (after)
0	0x00	10 10 LOAD-I	
1	0x02	13 FF ADD-I	
2	0x04	03 01 ADD-M	
3			
4			
5			
6			

QUESTION 2b

DIGITAL CIRCUIT DESIGN

Which button was pressed first?

Design a system with 2 digital inputs (a, b) and 2 digital outputs (x, y). Initially both outputs are 0.

If input a goes from 0 to 1 first, then x is set to 1 (and stays there forever), y stays at 0. If input b goes from 0 to 1 first, then y is set to 1 (and stays there forever), x stays at 0.

(a) Design a circuit with this functionality using only flip-flops and logic gates.

QUESTION 3

ASSEMBLY PROGRAMMING

Assume the black box from Q2b is implemented using an Atmel microcontroller. Write an Atmel assembly program to implement the desired functionality.

Initialize I/O:	not required (assume already done)
Read input ports a, b:	CALL read_a or CALL read_b (result in R0)
Write output ports x, y:	CALL write_x or CALL write_y (value in R0)

main:

QUESTION 4

(a) Connect the motor in the diagram below to the power supply, creating a H-bridge with 4 switches.

Actuators

(b) A motor should run at 20% max speed by using PWM at 100 Hz.

• Enter the timing values in the diagram below.

(c) Complete this program to generated a specified motor speed by using PWM.

- Assume the motor enable line is connected to output **D0** and you can set all bits of port D for simplicity.
- Assume ports have already been initialized.
- There is no encoder feedback.
- Run the while-loop at roughly 100 Hz.
- Use *usleep(microsec)* to sleep for the given number of microseconds.

void setPWM(int ratio) // ratio is between 0 and 100 { while(1) { }